How information is like snacks, money, and drugs—to your brain

Group of young people using smartphone mobile phone_Ming Hsu research

Can’t stop checking your phone, even when you’re not expecting any important messages? Blame your brain.

A new study by researchers at UC Berkeley’s Haas School of Business has found that information acts on the brain’s dopamine-producing reward system in the same way as money or food.

“To the brain, information is its own reward, above and beyond whether it’s useful,” says Assoc. Prof. Ming Hsu, a neuroeconomist whose research employs functional magnetic imaging (fMRI), psychological theory, economic modeling, and machine learning. “And just as our brains like empty calories from junk food, they can overvalue information that makes us feel good but may not be useful—what some may call idle curiosity.”

Assoc. Prof. Ming Hsu of the Haas Marketing Group
Assoc. Prof. Ming Hsu of the Haas Marketing Group

The paper, “Common neural code for reward and information value,” was published this month by the Proceedings of the National Academy of Sciences. Authored by Hsu and graduate student Kenji Kobayashi, now a post-doctoral researcher at the University of Pennsylvania, it demonstrates that the brain converts information into the same common scale as it does for money. It also lays the groundwork for unraveling the neuroscience behind how we consume information—and perhaps even digital addiction.

“We were able to demonstrate for the first time the existence of a common neural code for information and money, which opens the door to a number of exciting questions about how people consume, and sometimes over-consume, information,” Hsu says.

Rooted in the study of curiosity

The paper is rooted in the study of curiosity and what it looks like inside the brain. While economists have tended to view curiosity as a means to an end, valuable when it can help us get information to gain an edge in making decisions, psychologists have long seen curiosity as an innate motivation that can spur actions by itself. For example, sports fans might check the odds on a game even if they have no intention of ever betting.

Sometimes, we want to know something, just to know.

“Our study tried to answer two questions. First, can we reconcile the economic and psychological views of curiosity, or why do people seek information? Second, what does curiosity look like inside the brain?” Hsu says.

The neuroscience of curiosity

To understand more about the neuroscience of curiosity, the researchers scanned the brains of people while they played a gambling game. Each participant was presented with a series of lotteries and needed to decide how much they were willing to pay to find out more about the odds of winning. In some lotteries, the information was valuable—for example, when what seemed like a longshot was revealed to be a sure thing. In other cases, the information wasn’t worth much, such as when little was at stake.

For the most part, the study subjects made rational choices based on the economic value of the information (how much money it could help them win). But that didn’t explain all their choices: People tended to over-value information in general, and particularly in higher-valued lotteries. It appeared that the higher stakes increased people’s curiosity in the information, even when the information had no effect on their decisions whether to play.

The researchers determined that this behavior could only be explained by a model that captured both economic and psychological motives for seeking information. People acquired information based not only on its actual benefit, but also on the anticipation of its benefit, whether or not it had use.

Hsu says that’s akin to wanting to know whether we received a great job offer, even if we have no intention of taking it. “Anticipation serves to amplify how good or bad something seems, and the anticipation of a more pleasurable reward makes the information appear even more valuable,” he says.

Common neural code for information and money

How does the brain respond to information? Analyzing the fMRI scans, the researchers found that the information about the games’ odds activated the regions of the brain specifically known to be involved in valuation (the striatum and ventromedial prefrontal cortex or VMPFC), which are the same dopamine-producing reward areas activated by food, money, and many drugs. This was the case whether the information was useful, and changed the person’s original decision, or not.

Next, the researchers were able to determine that the brain uses the same neural code for information about the lottery odds as it does for money by using a machine learning technique (called support vector regression). That allowed them to look at the neural code for how the brain responds to varying amounts of money, and then ask if the same code can be used to predict how much a person will pay for information. It can.

In other words, just as we can convert such disparate things as a painting, a steak dinner, and a vacation into a dollar value, the brain converts curiosity about information into the same common code it uses for concrete rewards like money, Hsu says.

“We can look into the brain and tell how much someone wants a piece of information, and then translate that brain activity into monetary amounts,” he says.

Raising questions about digital addiction

While the research does not directly address overconsumption of digital information, the fact that information engages the brain’s reward system is a necessary condition for the addiction cycle, he says. And it explains why we find those alerts saying we’ve been tagged in a photo so irresistible.

“The way our brains respond to the anticipation of a pleasurable reward is an important reason why people are susceptible to clickbait,” he says. “Just like junk food, this might be a situation where previously adaptive mechanisms get exploited now that we have unprecedented access to novel curiosities.”

 

Regret is a gambler’s curse, scientists say

What goes through a gambler’s mind after she’s placed her bet?

It’s not just the anticipation of a big payoff, or doubts about the wisdom of her bet. It’s also regret about previous bets, both won and lost, according to UC Berkeley neuroscientists.

“Right after making a choice and right before finding out about the outcome, the brain is replaying and revisiting nearly every feature of what happened during the previous decision,” said senior author Ming Hsu, an associate professor in the Haas School of Business and Helen Wills Neuroscience Institute at UC Berkeley. “Instead of ‘I just gambled but maybe I shouldn’t have,’ it is, ‘Last round I gambled and that was a really good choice.’ Or, ‘I played it safe last time but should have gone for it.’”

Activity in the orbitofrontal cortex during a gambling experiment, as recorded by electrode meshes placed directly on the surface of the brain.
Activity in the orbitofrontal cortex during a gambling experiment, as recorded by electrode meshes placed directly on the surface of the brain. On the left, the dots indicate the positions of the electrodes in each of the 10 subjects, distinguished by color. During normal activity (middle), the electrodes (black dots) show little activity (red) in the OFC region that deals with regret. During the betting game, however (right), after learning the outcome of the bet, many electrodes record activity in the area where we feel regret (red).

The UC Berkeley study is one of a small but growing number of studies that record fast human brain activity – a thousand measurements per second – to reveal the complex array of operations underlying every decision we make, even those that may seem trivial.

Ming Hsu and Ignacio Saez at UC Berkeley.
Ming Hsu and Ignacio Saez at UC Berkeley. (Jim Block photo)

The researchers focused on the brain’s orbitofrontal cortex, long-known to be involved in reward processing and social interactions. Indeed, it was one of the main sites of damage in the well-known case involving 19th century railroad worker Phineas Gage, whose left frontal cortex was destroyed after an explosion drove an iron bar through his head. The damage altered his personality, making him impulsive and uninhibited – seemingly a man who didn’t regret any act, no matter how disastrous the outcome.

In recent decades, the orbitofrontal cortex has been shown to be involved in how people value their choice options, how much regret they felt, how much risk they were taking and how valuable their choice was, all of which guide future choices or help someone appraise how good or bad the outcome was.

As shown in this study, however, the orbitofrontal cortex spends much of the time replaying aspects of past decisions. In particular, when people play a gambling game, the main driver of activity in the orbitofrontal cortex is the regret they feel from losing or the regret, after winning, of not having bet more.

“It turns out that the most prevalent information encoded in the orbitofrontal cortex was the regret subjects experienced from their previous decision,” said first author Ignacio Saez, a former UC Berkeley postdoctoral fellow who is now an assistant professor at UC Davis.

With the ability to recognize the pattern of activity associated with regret, the findings could open the door to assessing how well the regret circuits in the brain operate in people with brain injuries or those with behaviors that suggest the absence of regret, including some politicians.

Read the full story by Robert Sanders—and try the gambling game—on Berkeley News.